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Quantifying the 3D structure of vegetation is of fundamental impor-
tance for understanding, modelling, monitoring and predicting bio-
diversity and ecosystems (Bakx et al., 2019; Davies & Asner, 2014; 
MacArthur & MacArthur,  1961; Pereira et al.,  2013). In particular, 
Light Detection And Ranging (LiDAR) point clouds from ALS sur-
veys – typically conducted at national, regional or landscape scales – 
have emerged as crucial datasets for monitoring and modelling 
biodiversity (Bakx et al.,  2019; Müller & Vierling,  2014; Valbuena 
et al., 2020). To extract relevant information on the vertical profile of 
ecosystems, the raw LiDAR point clouds from ALS surveys need to 
be further processed, for example, by calculating statistical proper-
ties (i.e. features, or metrics) of the point cloud within infinite square 
cells or cubes (Meijer et al.,  2020). Examples are the mean height 
of vegetation points within a grid cell or the density of vegetation 
points within a particular horizontal layer (e.g. within cubes). Since 
the number of LiDAR metric names, metric definitions and calcula-
tion methods used in ecological papers is vast and often confusing 

(see e.g. Appendix 3 of Bakx et al., 2019), we welcome the idea from 
Moudrý et al. (2023) to start a deeper discussion about which ALS 
metrics of vegetation structure should be easily accessible to re-
searchers and stakeholders. Here, we aim to contribute to this dis-
cussion by highlighting that the proposed ‘list of 10 ALS metrics’ has 
several flaws.

First, many of the metrics proposed by Moudrý et al. (2023) – 
for example, all metrics of vegetation height (maximum height, 
mean height, and height percentiles) – are highly correlated with 
each other (see Figure  1a for an example from a country-wide 
dataset of the Netherlands). This multi-collinearity extends be-
yond the height metrics themselves because several of the other 
variables proposed by Moudrý et al.  (2023), such as those related 
to cover and vertical variability, are also highly correlated with 
height (Figure  1a). For instance, variables measuring vegetation 
cover and density (i.e. the number of laser returns) in specific layers 
(e.g. above 3 m or within 5–20 m) or some of the vertical variability 
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Abstract
In a recent perspective (Diversity and Distributions, 29, 39–50), ‘10 variables’ were 
proposed to measure vegetation structure from airborne laser scanning (ALS) for as-
sessing species distributions and habitat suitability. We worry about this list because 
the variables predominantly represent variation in vegetation height, the vertical vari-
ability of vegetation biomass is insufficiently captured, and variables of vegetation 
cover are ill-defined or not ecosystem agnostic. We urge for a better defined, more 
comprehensive and more balanced list, and for assessing which information from 
ALS point clouds is truly essential to measure the major dimensions of 3D vegetation 
structure within and across ecosystems and animal habitats. We think that the cur-
rently proposed ‘list of 10 ALS metrics’ is premature and that researchers and stake-
holders should be cautious in adopting this list.
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metrics (e.g. foliage height diversity based on the Shannon-Wiener 
index) are highly correlated with vegetation height metrics (for an 
example, see Figure 6a,b in Kissling et al., 2022). Hence, the list of 
ALS metrics from Moudrý et al.  (2023) predominantly represents 
variation in vegetation height whereas it is short in variables that 
capture other dimensions of vegetation structure (see following 
paragraphs below). We believe that a more comprehensive set of 
variables is needed to better reflect the multidimensionality of the 
environmental (i.e. ecosystem structure) space, especially with vari-
ables that can deviate from simple statistical or allometric scaling 
relationships with vegetation height (West et al., 2009). This may 
be particularly important in the context of essential biodiversity 
variables (EBVs) where a minimum set of measurements, comple-
mentary to one another, is needed to capture the major dimensions 

of biodiversity change (Pereira et al., 2013; Schmeller et al., 2017). 
We suggest that the list of ALS metrics needs to be more balanced 
to better capture the key dimensions of ecosystem structure 
(Valbuena et al., 2020). Testing a larger range of metrics and their 
co-variation, independence, deviation and unexplained (residual) 
variance relative to vegetation height can be a first step (Figure 1). 
Moreover, identifying the relative contributions of independent 
variables and how metrics capture the concentration of the vertical 
point distribution (i.e. dispersion relative to location) may be partic-
ularly informative (Valbuena et al., 2017). Applying dimensionality 
reduction methods such as a Principal Component Analysis (PCA) 
can further help to identify which metrics represent different di-
mensions of ecosystem structure in a particular dataset (see e.g. 
Kissling et al., 2022).

F I G U R E  1  Covariation among 25 metrics of vegetation structure derived from a country-wide, 10 m resolution airborne laser scanning 
dataset across the whole Netherlands. (a) Correlation matrix (Spearman's Rank correlation coefficients r) of metrics grouped into vegetation 
height, cover and vertical variability. Coloured boxes behind metric abbreviations show congruence with variables from Moudrý et al. (2023) 
(see legend). All height metrics (upper left corner) are highly correlated (r > 0.8), and several metrics of vegetation cover and vertical 
variability are also highly correlated with vegetation height. (b) Axes from a Principal Component Analysis (PCA) explaining in total ~ 75% of 
variation among the 25 metrics. PCA axis 1 (Dim1, explaining 55% variation) is mainly characterized by vegetation height, with percentiles 
(e.g. Hp75 and Hp95), averages (Hmean and Hmedian) and maximum values (Hmax) of height making the strongest contributions. PCA axis 
3 (Dim3, explaining 8% variation) is mainly characterized by vertical variability, with skewness (Hskew), coefficient of variation (Coeff_var_z) 
and kurtosis (Hkurt) making the strongest contributions. Note that the standard deviation of vegetation height (Hsd) and the foliage height 
diversity (Entropy_z) indicated with the two red arrows are grouped by Moudrý et al. (2023) into the vertical variability class, even though 
they strongly correlate with vegetation height (Dim1) and hence do not represent vertical variability (Dim3). See figure legend for metric 
abbreviations. Metric calculations are explained in Kissling et al. (2023), and additional details of the PCA are provided in the Appendix A of 
Kissling et al. (2022).
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Hmax = maximum vegetation height
Hmean = mean vegetation height
Hmedian = median vegetation height
Hp25 = 25th percentile of vegetation height
Hp50 = 50th percentile of vegetation height
Hp75 = 75th percentile of vegetation height
Hp95 = 95th percentile of vegetation height
PPR = Pulse penetration ratio
Dens_ab_m_z = canopy cover above mean height
BR_below_1 = density of vegetation points below 1 m
BR_1_2 = density of vegetation points between 1–2 m
BR_2_3 = density of vegetation points between 2–3 m
BR_above_3 = density of vegetation points above 3 m

BR_3_4 = density of vegetation points between 3–4 m
BR_4_5 = density of vegetation points between 4–5 m
BR_below_5 = density of vegetation points below 5 m
BR_5_20 = density of vegetation points between 5–20 m
BR_above_20 = density of vegetation points above 20 m
Coeff_var_z = coefficient of variation of vegetation height
Entropy_z = Shannon index
Hkurt = kurtosis of vegetation height
Sigma_z = roughness of vegetation
Hskew = skewness of vegetation height
Hstd = standard deviation of vegetation height
Hvar = variance of vegetation height

Metric congruence with Moudrý et al. (2023):

Metrics are identical

Metrics are similar but not exactly the same

Metrics are not included by Moudrý et al. (2023)

Metric abbreviations:
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Second, the list of 10 ALS metrics from Moudrý et al.  (2023) 
proposes only two variables for measuring the vertical variability 
of vegetation structure, namely the standard deviation of vegeta-
tion height (SD) and the foliage height diversity (FHD) based on the 
Shannon-Wiener index (sometimes referred to as entropy). However, 
both variables are highly collinear with height metrics (Figure 1b) and 
hence do not represent independent variation of the vertical vari-
ability of vegetation structure. The SD is often correlated with the 
mean, while the coefficient of variation (CV) – also known as rela-
tive standard deviation (i.e. the ratio of the standard deviation to the 
mean) – is not. The CV of vegetation height is thus a better choice 
than the SD of vegetation height (Figure 1b). In addition, metrics such 
as the skewness or kurtosis of vegetation height were not included 
in the list of Moudrý et al.  (2023), but they can capture important 
ecological aspects of the vertical variability of vegetation (Figure 1b, 
see also Figure 6 in Kissling et al., 2022). Skewness and kurtosis (as 
well as the CV) of vegetation height can therefore represent varia-
tion of vertical variability that is independent from vegetation height 
and cover (see Dim3 in Figure 6a of Kissling et al., 2022). Previous 
analyses with L-moments from ALS data (i.e. statistics summarizing 
the vertical probability density distribution of point clouds) also con-
firm that CV and skewness are independent metrics that contain in-
formation about ecosystem structure in Boreal forests (e.g. uneven 
tree size classes), i.e. variation that is not already captured by vege-
tation height (Valbuena et al., 2017). We therefore recommend that 
ALS metrics of vertical variability of vegetation should not be re-
stricted to SD and FHD, but also include skewness, kurtosis and CV 
of vegetation height. Moreover, some authors emphasize that FHD 
is not designed to describe continuous variables, and hence suggest 
replacing FHD with Lorenz curves and Gini coefficients (Valbuena 
et al., 2021). Whether these alternative metrics do indeed provide a 
better description of the vertical variability of vegetation than FHD 
needs to be tested with a range of datasets and in different ecosys-
tems, not only in forests.

Third, several definitions of vegetation cover metrics from 
Moudrý et al. (2023) are not ecosystem agnostic or their definitions 
are potentially misleading, which can introduce confusion and ambi-
guities in metric calculations. For instance, three of the cover vari-
ables (i.e. cover of the herbaceous layer, cover of the shrub layer, and 
cover of the tree layer) imply a forest vegetation with herb, shrub 
and tree layers. However, for different ecosystems (e.g. grasslands, 
shrublands and forests), the top vegetation layer is not necessarily 
represented by trees (Figure 2a). Similarly, a middle vegetation layer 
is not necessarily represented by shrubs in all ecosystems. The defi-
nition and calculation of cover in specific vegetation layers therefore 
needs to be more explicit in terms of upper and lower height bound-
aries, rather than defining it as ‘lowest, middle and top vegetation 
layer’, as proposed by Moudrý et al.  (2023). Our suggestion to de-
fine concrete upper and lower height boundaries makes such met-
rics ecosystem agnostic, i.e. independent of a particular ecosystem. 
While Moudrý et al. (2023) in their discussion suggest the use of at 
least 10 height bins for the cover variable ‘Density proportions (%)’, 
they do not suggest this for the three variables of herbaceous, shrub 

and tree layer cover, where it would be desirable. We therefore rec-
ommend being explicit about the definition of height bins for vari-
ables in the vegetation cover class. Recently published data papers 
which provide LiDAR vegetation cover metrics from country-wide 
ALS surveys are indeed more explicit than Moudrý et al. (2023), for 
example, providing vegetation cover for nine height bins across the 
Netherlands (Kissling et al., 2023) or 24 height bins across Denmark 
(Assmann et al., 2022).

Fourth, the calculation and definition of vegetation cover metrics 
as proposed by Moudrý et al. (2023) can introduce biases in repre-
senting the vertical distribution of vegetation biomass. For instance, 
density proportions can be calculated from point clouds in several 
ways depending on whether non-vegetation points are included or 
not (Figure  2b). Moudrý et al.  (2023) suggest to calculate density 
proportions as the ‘proportion of returns in a certain bin to the total 
number of returns’, that is, using the number of all points (includ-
ing non-vegetation points) in each height bin divided by the total 
number of points (also including non-vegetation points). Assmann 
et al. (2022) calculated vegetation proportions as the ratio of vegeta-
tion returns to total returns, that is, using the number of vegetation 
points (excluding non-vegetation points) in each height bin divided 
by the total number of points (also including non-vegetation points). 
Both ways of calculating density proportions may not correctly rep-
resent vegetation cover, with the former being potentially more bi-
ased than the latter (Figure 2c). We suggest that vegetation cover 
metrics for specific layers such as ‘density proportions’ (Moudrý 
et al.,  2023) or ‘vegetation proportions by height bin’ (Assmann 
et al., 2022) should be calculated as the number of vegetation points 
in a height bin relative to the total number of vegetation points, that 
is, explicitly excluding non-vegetation points (Kissling et al., 2023). 
This will better represent the vertical distribution of vegetation 
density (rather than the amount of points relative to all points) and 
represent an independent dimension of vegetation structure com-
pared to other vegetation metrics (e.g. Dim2 in Figure 6a of Kissling 
et al., 2023).

In conclusion, we urge researchers and stakeholders to be cau-
tious in adopting the list of Moudrý et al.  (2023) because it (1) is 
biased towards metrics representing vegetation height, (2) lacks 
metrics that can capture independent information on vertical vari-
ability of vegetation structure and (3) contains ambiguous informa-
tion on the definition and calculation of vegetation cover metrics. 
We agree with Moudrý et al.  (2023) that a systematic testing is 
needed. We therefore urge for comprehensive assessments of 
a large range of vegetation metrics from multiple ALS datasets to 
quantify their ecological relevance, statistical redundancy and in-
dependent contribution for measuring the key dimensions of veg-
etation structure, namely ecosystem height, ecosystem cover and 
ecosystem structural complexity (Valbuena et al.,  2020). Due to 
the scale-dependence of ecological patterns and processes, LiDAR 
metrics might need to be calculated at different spatial resolutions 
(Atkins et al., 2023), or their fine-scale heterogeneity (i.e. horizontal 
variability) needs to be aggregated at a coarser resolution (Graham 
et al., 2019). The time for such assessments is ripe because (1) a large 
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number of country-wide ALS datasets is now openly accessible (see 
overviews in Kissling et al., 2022; Moudrý et al., 2023; Stereńczak 
et al.,  2020), (2) user friendly, free and open source software has 
been developed to calculate a large range of ALS metrics (Meijer 
et al., 2020; Roussel et al., 2020) and (3) high-throughput (reproduc-
ible and open source) workflows are now available to perform the 
efficient, scalable, distributed and standardized processing of multi-
terabyte LiDAR point clouds into ALS metrics (Kissling et al., 2022). 
Until such assessments are performed, proposing a list of 10 ALS 
metrics may seem premature.
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F I G U R E  2  Important aspects of defining and calculating vegetation cover metrics from airborne laser scanning (ALS) point clouds. (a) The 
definition of layers for vegetation cover metrics (e.g. density of vegetation points in specific height bins) should be explicit in terms of their 
upper and lower height boundaries because the definition of a top layer (or a middle vegetation layer) can differ among ecosystems (e.g. 
forest, shrubland and grassland). (b) Point cloud of a 30 × 30 m plot showing the vertical distribution of vegetation and non-vegetation points 
(buildings and ground) within specific height bins. (c) Density proportions in height bins may not correctly represent vegetation cover if they 
are calculated as the number of all points (including non-vegetation points) in each height bin divided by the total number of points (left) or 
as the number of vegetation points in each height bin divided by the total number of points (middle). Vegetation density is best represented 
when calculated as the number of vegetation points in each height bin divided by all vegetation points (right).
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