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a b s t r a c t 

The third Dutch national airborne laser scanning flight cam- 

paign (AHN3, Actueel Hoogtebestand Nederland) conducted 

between 2014 and 2019 during the leaf-off season (October–

April) across the whole Netherlands provides a free and 

open-access, country-wide dataset with ∼700 billion points 

and a point density of ∼10(–20) points/m 

2 . The AHN3 point 

cloud was obtained with Light Detection And Ranging (Li- 

DAR) technology and contains for each point the x, y, z co- 

ordinates and additional characteristics (e.g. return number, 

intensity value, scan angle rank and GPS time). Moreover, 

the point cloud has been pre-processed by ‘Rijkswaterstraat’ 

(the executive agency of the Dutch Ministry of Infrastructure 

and Water Management), comes with a Digital Terrain Model 

(DTM) and a Digital Surface Model (DSM), and is delivered 

with a pre-classification of each point into one of six classes 

(0: Never Classified, 1: Unclassified, 2: Ground, 6: Building, 9: 
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Water, 26: Reserved [bridges etc.]). However, no detailed in- 

formation on vegetation structure is available from the AHN3 

point cloud. We processed the AHN3 point cloud ( ∼16 TB 

uncompressed data volume) into 10 m resolution raster lay- 

ers of ecosystem structure at a national extent, using a novel 

high-throughput workflow called ‘Laserfarm’ and a cluster 

of virtual machines with fast central processing units, high 

memory nodes and associated big data storage for manag- 

ing the large amount of files. The raster layers (available 

as GeoTIFF files) capture 25 LiDAR metrics of vegetation 

structure, including ecosystem height (e.g. 95 th percentiles 

of normalized z), ecosystem cover (e.g. pulse penetration ra- 

tio, canopy cover, and density of vegetation points within 

defined height layers), and ecosystem structural complex- 

ity (e.g. skewness and variability of vertical vegetation point 

distribution). The raster layers make use of the Dutch pro- 

jected coordinate system (EPSG:28992 Amersfoort / RD New), 

are each ∼1 GB in size, and can be readily used by ecol- 

ogists in a geographic information system (GIS) or analyti- 

cal open-source software such as R and Python. Even though 

the class ‘1: Unclassified’ mainly includes vegetation points, 

other objects such as cars, fences, and boats can also be 

present in this class, introducing potential biases in the de- 

rived data products. We therefore validated the raster layers 

of ecosystem structure using > 180,0 0 0 hand-labelled LiDAR 

points in 100 randomly selected sample plots (10 m × 10 

m each) across the Netherlands. Besides vegetation, objects 

such as boats, fences, and cars were identified in the sam- 

pled plots. However, the misclassification rate of vegetation 

points (i.e. non-vegetation points that were assumed to be 

vegetation) was low ( ∼0.05) and the accuracy of the 25 Li- 

DAR metrics derived from the AHN3 point cloud was high 

( ∼90%). To minimize existing inaccuracies in this country- 

wide data product (e.g. ships on water bodies, chimneys 

on roofs, or cars on roads that might be incorrectly used 

as vegetation points), we provide an additional mask that 

captures water bodies, buildings and roads generated from 

the Dutch cadaster dataset. This newly generated country- 

wide ecosystem structure data product provides new oppor- 

tunities for ecology and biodiversity science, e.g. for map- 

ping the 3D vegetation structure of a variety of ecosystems 

or for modelling biodiversity, species distributions, abun- 

dance and ecological niches of animals and their habitats. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S

 

pecifications Table 

Subject Environmental Science, Ecology 

Specific subject area Macroecology and geographical ecology: geospatial information on the 3D 

structure of ecosystems is essential for modelling the broad-scale distribution 

of life on Earth. 

Type of data Image (GeoTIFF files in the Dutch projected coordinate system (EPSG:28992 

Amersfoort / RD New) 

( continued on next page )
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How the data were acquired We acquired the raw LiDAR data (AHN3 point cloud dataset) from the 

repository of the PDOK webservices ( https://app.pdok.nl/ahn3-downloadpage/ ) 

using a script for automatic downloading (available on GitHub: 

https://github.com/eEcoLiDAR/downloadAHN ). We subsequently processed the 

multi-terabyte point clouds from AHN3 with the ‘Laserfarm’ workflow 

( https://pypi.org/project/laserfarm/ ) into 25 raster layers of ecosystem structure 

at a national extent with 10 m spatial resolution. In brief, the Laserfarm 

workflow (1) splits the raw data into tiles of appropriate size based on a 

defined grid (re-tiling), (2) calculates the normalized vegetation height for 

each individual point as the height relative to the lowest point within a 

defined grid cell (normalization), (3) calculates 25 LiDAR metrics with a 

defined spatial resolution (feature extraction), and (4) merges all tiles for each 

metric into raster layers in GeoTIFF format (rasterization). A detailed 

description of this high-throughput LiDAR workflow is provided in a paper 

describing the Laserfarm design, implementation and its performance [1] . 

In addition to the 25 LiDAR metrics, we calculated the AHN3 point density (# 

of points) for each 10 m x 10 m grid cell using the point density feature from 

the ‘Laserchicken’ software [2] which is also incorporated into the Laserfarm 

workflow [1] . 

Finally, we derived a mask (with 10 m spatial resolution) capturing water 

surfaces and human infrastructures (e.g. buildings and roads) by aggregating 

and rasterizing the water, building and road polygons from the shapefiles of 

the 2018 Dutch cadaster data (TOP10NL, https://zakelijk.kadaster.nl/-/top10nl ). 

For this step, a Jupyter Notebook was employed which is available on GitHub 

( https://github.com/eEcoLiDAR/AHN/tree/main/AHN-mask ). 

Data format Raster layers in GeoTIFF format (10 m spatial resolution) derived from (1) 

processing raw data (AHN3 point clouds) into LiDAR metrics capturing 

different aspects of ecosystem structure (25 raster layers), (2) calculating AHN3 

point density (1 raster layer), and (3) aggregating water surfaces and human 

infrastructures (e.g. buildings and roads) from shapefiles of the Dutch TOP10NL 

cadaster data (1 raster layer). 

Description of data collection Only the AHN3 class ‘1: Unclassified’ includes vegetation points. Normalizing 

the height (z-values) of all points in the AHN3 class ‘1: Unclassified’ relative to 

the terrain surface was done with the lowest point within a 1 m × 1 m cell 

using the ‘Normalize’ module of ’Laserchicken’ 

( https://laserchicken.readthedocs.io/en/latest/#normalize ). 

Data source location The raw data (LiDAR point clouds) have been obtained by the third Dutch 

national airborne laser scanning flight campaign (AHN3). They can be viewed 

either via the Dutch geodataset platform called ‘Publieke Dienstverlening Op 

de Kaart (PDOK)’ ( https://www.pdok.nl/introductie/-/article/actueel- 

hoogtebestand-nederland- ahn3- ) or via the viewer of the ‘Actueel 

Hoogtebestand Nederland (AHN)’ ( https://ahn.arcgisonline.nl/ahnviewer/ ). 

Besides the raw LiDAR point clouds, a Digital Terrain Model (DTM) and a 

Digital Surface Model (DSM) at both 0.5 m and 5 m resolution are also 

provided by the Actueel Hoogtebestand Nederland (AHN). This information is 

publicly available ( https://app.pdok.nl/ahn3-downloadpage/ ), and we therefore 

do not provide any topographic data with our data publication. 

Additional raw data (polygon shapefiles) for creating the mask of water 

surfaces and human infrastructures (buildings and roads) were obtained from 

the 2018 Dutch cadastre data (TOP10NL), also available from PDOK ( https: 

//www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl ). 

Data accessibility All data (i.e. 27 raster layers in GeoTIFF format, see section ’Data description’ 

below) are made publicly available [3] . 

Repository name: Zenodo 

Data identification number: DOI 10.5281/zenodo.6421381 

Direct URL to data: https://zenodo.org/record/6421381 

Related research article Kissling, W.D., Shi, Y., Koma, Z., Meijer, C., Ku, O., Nattino, F., Seijmonsbergen, 

A.C., Grootes, M.W., 2022. Laserfarm – A high-throughput workflow for 

generating geospatial data products of ecosystem structure from airborne laser 

scanning point clouds. Ecological Informatics 72, 101836. 

https://doi.org/10.1016/j.ecoinf.2022.101836 
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t  
alue of the Data 

• Ecosystem structure data are important for understanding, modelling and predicting biodi-

versity because the species richness, composition, distribution and abundance of organisms

and their habitat preferences (e.g. nest sites and shelter), food provisioning and foraging are

tightly linked to the horizontal and vertical heterogeneity of vegetation. 

• The physical structure of ecosystems also influences microclimates at the land–air interface

via respiration, heat and energy exchange. This affects species behavior, growth, reproduction,

and survival. Predictions of species and ecosystem responses to global change thus require

high resolution data of ecosystem structure to account for temperature buffering near the

ground and microrefugia within landscapes. 

• Measurements of the vertical structure of forests and other ecosystems are also critical

for accurately assessing biomass and carbon storage, and how land use changes, ecosystem

restoration or variations in climate may impact atmospheric CO 2 concentrations. 

• Spatially contiguous, high resolution raster layers of ecosystem structure will thus be ben-

eficial for a range of users, including field biologists, ecologists, conservationists, ecological

modelers, geoinformaticians, land managers and environmental system analysts. Researchers

from other domains (e.g. hydrology and climatology) might also take advantage of such data.

• Ecosystem structure data can be used as predictors in statistical models (e.g. profile mod-

els, regressions, machine learning and geographical models) to correlate species observations

with environmental layers. Such predictive habitat distribution models aim to quantify and

map the determinants of species’ ecological niches and their ability to cope with climate or

land use change. 

. Objective 

This dataset was generated during the development of the Laserfarm workflow, a high-

hroughput pipeline for generating geospatial data products of ecosystem structure from air-

orne laser scanning point clouds. The aim was to create a high-resolution (10 m) geospatial

ataset of 25 LiDAR metrics (i.e. raster layers in GeoTIFF format) from multi-terabyte LiDAR point

louds at a national extent (i.e. across the Netherlands), capturing various aspects of ecosystem

tructure, including vegetation height, cover and structural complexity of vegetation. This pro-

ides a standardized set of Essential Biodiversity Variables (EBVs) derived from LiDAR for the

BV ‘Ecosystem Vertical Profile’ [4 , 5] and thereby facilitates the monitoring and modelling of

iodiversity and ecosystems [6–8] . The original research article related to this data publication

escribes the design principles, architecture, implementation and performance of the Laserfarm

orkflow, and the statistical relationships among the 25 LiDAR metrics. Here, we describe the

pecific details and mathematical description of each LiDAR metric, perform a validation with

and-labelled points to quantify the misclassification rate and the accuracy of the LiDAR met-

ics, and provide a mask of water surfaces and human infrastructures (buildings and roads) from

he Dutch cadaster data to minimize inaccuracies related to misclassifications. The overall objec-

ive of this data paper is therefore to provide an open-access dataset of ecosystem structure

ariables for modeling species distributions [9 , 10] and ecological niches [11] , for analyzing bio-

iversity in relation to vegetation structure and land use [12] , and for mapping land cover types

13] and other habitat features such as hedges and tree lines [14] . 

. Data Description 

.1. Raster layers of ecosystem structure 

A total of 25 LiDAR metrics of ecosystem structure were calculated ( Table 1 ). The spa-

ial resolution of grid cells was 10 m and the spatial extent was the whole Netherlands. The
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Table 1 

Twenty-five LiDAR metrics capturing ecosystem structure in three key dimensions (ecosystem height, ecosystem cover and ecosystem structural complexity). All metrics were calculated 

with the normalized point cloud, using the Dutch AHN3 point clouds as input and the features from the ’Laserchicken’ software ( https://laserchicken.readthedocs.io/en/latest/#features ). 

More details on metric calculation are provided on GitHub ( https://github.com/eEcoLiDAR/laserchicken ) and on the ’Laserchicken’ documentation page ( https://laserchicken.readthedocs. 

io/en/latest/ ). The processed 10 m resolution GeoTIFF files are available from the Zenodo repository [3] . 

LiDAR metric 

(abbreviation) GeoTIFF file name in Zenodo Laserchicken feature name Formula Description Ecological relevance 

Ecosystem height 

Maximum vegetation 

height (Hmax) 

ahn3_10m_max_ 

normalized_height 

max_norm_z z max Maximum of normalized z 

within a grid cell 

Height of the vegetation 

canopy surface and tree 

tops 

Mean of vegetation 

height (Hmean) 

ahn3_10m_mean_ 

normalized_height 

mean_norm_z 1 
N 

× ∑ 

z i where N is the 

number of normalized z 

values and 
∑ 

z i the sum of 

all normalized z values in a 

grid cell 

Mean of normalized z within a 

grid cell 

Average height of 

vegetation (e.g. mean tree 

and shrub height in forests) 

Median of vegetation 

height (Hmedian) 

ahn3_10m_median_ 

normalized_height 

median_norm_z z median Median of normalized z within 

a grid cell 

Average height and vertical 

distribution of vegetation 

25 th percentile of 

vegetation height 

(Hp25) 

ahn3_10m_perc_25_ 

normalized_height 

perc_25_normalized_ 

height 

n = ( 25 
100 

) × N, where 

N = number of normalized 

z values (sorted from 

smallest to largest), and 

n = ordinal rank of a given 

value 

Capturing the 25 th percentile of 

normalized z within a grid cell 

Density of vegetation in the 

low stratum 

50 th percentile of 

vegetation height 

(Hp50) 

ahn3_10m_perc_50_ 

normalized_height 

perc_50_normalized_ 

height 

n = ( 50 
100 

) × N, where 

N = number of normalized 

z values (sorted from 

smallest to largest), and 

n = ordinal rank of a given 

value. This corresponds to 

the Hmedian 

Capturing the 50 th percentile of 

normalized z within a grid cell 

Average height and vertical 

distribution of vegetation 

75 th percentile of 

vegetation height 

(Hp75) 

ahn3_10m_perc_75_ 

normalized_height 

perc_75_normalized_ 

height 

n = ( 75 
100 

) × N, where 

N = number of normalized 

z values (sorted from 

smallest to largest), and 

n = ordinal rank of a given 

value 

Capturing the 75 th percentile of 

normalized z within a grid cell 

Density of vegetation in the 

upper stratum 

95 th percentile of 

vegetation height 

(Hp95) 

ahn3_10m_perc_95_ 

normalized_height 

perc_95_normalized_ 

height 

n = ( 95 
100 

) × N, where 

N = number of normalized 

z values (sorted from 

smallest to largest), and 

n = ordinal rank of a given 

value 

Capturing the 95 th percentile of 

normalized z within a grid cell 

Height of the vegetation 

canopy surface and tree 

tops, accounting for the 

effect of outliers 

( continued on next page ) 
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Table 1 ( continued ) 

LiDAR metric 

(abbreviation) GeoTIFF file name in Zenodo Laserchicken feature name Formula Description Ecological relevance 

Ecosystem cover 

Pulse penetration ratio 

(PPR) 

ahn3_10m_pulse_ 

penetration_ratio 

pulse_penetration_ ratio 
N ground 

N total 
Ratio of number of ground 

points ( N ground ) to the total 

number of points ( N total ) within 

a grid cell 

Openness of vegetation, 

canopy fractional cover, 

laser penetration index 

Canopy cover above 

mean height (Den- 

sity_above_mean_z) 

ahn3_10m_density_absolute_ 

mean_ normalized_height 

density_absolute_ 

mean_norm_z 

100 × ∑ 

[ z i > ̄z ] /N where 

z i are all normalized z 

values that are larger than 

the mean vegetation height 

z̄ within a grid cell, and N

the total number of 

normalized z values 

Number of returns above mean 

height within a grid cell 

Density of upper vegetation 

layer 

Density of vegetation 

points below 1 m 

(BR_below_1) 

ahn3_10m_band_ratio_ 

normalized_height_1 

band_ratio_normalized_ 

height < 1 

N z< 1 /N total Ratio of number of vegetation 

points ( < 1 m) to the total 

number of vegetation points 

within a grid cell 

Density of vegetation < 1 m 

Density of vegetation 

points between 1–2 m 

(BR_1_2) 

ahn3_10m_band_ratio_1_ 

normalized_height_2 

band_ratio_1 < normalized_ 

height < 2 

N 1 <z< 2 /N total Ratio of number of vegetation 

points (between 1–2 m) to the 

total number of vegetation 

points within a grid cell 

Density of vegetation in 

1–2 m layer 

Density of vegetation 

points between 2–3 m 

(BR_2_3) 

ahn3_10m_band_ratio_2_ 

normalized_height_3 

band_ratio_2 < normalized_ 

height < 3 

N 2 <z< 3 /N total Ratio of number of vegetation 

points (between 2–3 m) to the 

total number of vegetation 

points within a grid cell 

Density of vegetation in 

2–3 m layer 

Density of vegetation 

points above 3 m 

(BR_above_3) 

ahn3_10m_band_ratio_3_ 

normalized_height 

band_ratio_normalized_ 

height > 3 

N z> 3 /N total Ratio of number of vegetation 

points ( > 3 m) to the total 

number of vegetation points 

within a grid cell 

Density of vegetation above 

3 m 

Density of vegetation 

points between 3–4 m 

(BR_3_4) 

ahn3_10m_band_ratio_3_ 

normalized_height_4 

band_ratio_3 < normalized_ 

height < 4 

N 3 <z< 4 /N total Ratio of number of vegetation 

points (between 3–4 m) to the 

total number of vegetation 

points within a grid cell 

Density of vegetation in 

3–4 m layer 

( continued on next page ) 
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Table 1 ( continued ) 

LiDAR metric 

(abbreviation) GeoTIFF file name in Zenodo Laserchicken feature name Formula Description Ecological relevance 

Density of vegetation 

points between 4–5 m 

(BR_4_5) 

ahn3_10m_band_ratio_4_ 

normalized_height_5 

band_ratio_4 < normalized_ 

height < 5 

N 4 <z< 5 /N total Ratio of number of vegetation 

points (between 4–5 m) to the 

total number of vegetation 

points within a grid cell 

Density of vegetation in 

4–5 m layer 

Density of vegetation 

points below 5 m 

(BR_below_5) 

ahn3_10m_band_ratio_ 

normalized_height_5 

band_ratio_normalized_ 

height < 5 

N z< 5 /N total Ratio of number of vegetation 

points ( < 5 m) to the total 

number of vegetation points 

within a grid cell 

Density of vegetation in 

understory layer ( < 5 m) 

Density of vegetation 

points between 5–20 m 

(BR_5_20) 

ahn3_10m_band_ratio_5_ 

normalized_height_20 

band_ratio_5 < normalized_ 

height < 20 

N 5 <z< 20 /N total Ratio of number of vegetation 

points (between 5–20 m) to 

the total number of vegetation 

points within a grid cell 

Density of vegetation in 

5–20 m layer 

Density of vegetation 

points above 20 m 

(BR_above_20) 

ahn3_10m_band_ratio_20_ 

normalized_height 

band_ratio_normalized_ 

height > 20 

N z> 20 /N total Ratio of number of vegetation 

points ( > 20 m) to the total 

number of vegetation points 

within a grid cell 

Density of vegetation above 

20 m 

Ecosystem structural 

complexity 

Coefficient of variation 

of vegetation height 

(Coeff_var_z) 

ahn3_10m_coeff_var_ 

normalized_height 

coeff_var_norm_z 1 

Z̄ 
×

√ ∑ ( z i −z̄ ) 
2 

N−1 
where z̄ is 

the mean vegetation 

height, z i all normalized z 

values in a grid cell, and N

the number of normalized 

z values 

Coefficient of variation of 

normalized z within a grid cell 

Vertical variability of 

vegetation distribution 

(ratio of the standard 

deviation to the mean) 

Shannon index 

(Entropy_z) 

ahn3_10m_entropy_ 

normalized_height 

entropy_norm_z − ∑ 

i 

p i × log 2 p i where 

p i = N i / 
∑ 

j 

N j and N i the 

points in bin i 

The negative sum of the 

proportion of points within 0.5 

m height layers multiplied with 

the logarithm of the proportion 

of points within 0.5 m height 

layers within a grid cell 

Complexity and evenness 

of vertical vegetation 

distribution, sometimes 

referred to as foliage height 

diversity 

( continued on next page ) 
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Table 1 ( continued ) 

LiDAR metric 

(abbreviation) GeoTIFF file name in Zenodo Laserchicken feature name Formula Description Ecological relevance 

Kurtosis of vegetation 

height (Hkurt) 

ahn3_10m_kurto_ 

normalized_height 

kurto_norm_z 1 
σ 4 ×

∑ 

( z i − z̄ ) 
4 
/N where z i 

are the normalized z values 

in a grid cell, z̄ the mean of 

normalized z values, and N

the total number of 

normalized z values 

Kurtosis of normalized z within 

a grid cell 

Vertical distribution 

(‘tailedness’) of vegetation 

Roughness of 

vegetation (Sigma_z) 

ahn3_10m_sigma_z sigma_z 

√ ∑ 

( R i − R̄ ) 
2 
/ ( N − 1 ) 

where R i are the residual 

after plane fitting, and R̄ 

the mean of residuals 

Standard deviation of the 

residuals of a locally fitted 

plane within a cylinder 

Small-scale roughness and 

variability of vegetation 

Skewness of vegetation 

height (Hskew) 

ahn3_10m_skew_ 

normalized_height 

skew_norm_z 1 
σ 3 ×

∑ 

( z i − z̄ ) 
3 
/N where z i 

are the normalized z values 

in a grid cell, z̄ the mean of 

normalized z values, and N

the total number of 

normalized z values 

Skewness of normalized z 

within a grid cell 

Vertical distribution 

(asymmetry) of vegetation 

Standard deviation of 

vegetation height 

(Hstd) 

ahn3_10m_std_ 

normalized_height 

std_norm_z 

√ ∑ ( z i −z̄ ) 
2 

N−1 
where z̄ is the 

mean vegetation height, z i 
all normalized z values in a 

grid cell, and N the number 

of normalized z values 

Standard deviation of 

normalized z within a grid cell 

Vertical variability (i.e. 

amount of variation around 

mean) of vegetation 

distribution 

Variance of vegetation 

height (Hvar) 

ahn3_10m_var_ 

normalized_height 

var_norm_z 
∑ ( z i −z̄ ) 

2 

N−1 
where z̄ is the 

mean vegetation height, z i 
all normalized z values in a 

grid cell, and N the number 

of normalized z values 

Variance of normalized z 

within a grid cell 

Vertical variability of 

vegetation distribution 

(dispersion around mean 

height) 
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AHN3 point cloud was used as input (see above ’Data source location’) and metric calculation

was performed with the Laserfarm workflow ( https://pypi.org/project/laserfarm/ ), using the fea-

ture extraction module from the ’Laserchicken’ software ( https://laserchicken.readthedocs.io/en/

latest/#features ). For each of the 25 calculated LiDAR metrics, the GeoTIFF file name, the Laser-

chicken feature name, the formula, a general description and its ecological relevance is provided

( Table 1 ). The metrics are grouped into three key dimensions of ecosystem structure, following

a standardized framework of ecosystem structure variables in the context of EBVs [4] , namely

ecosystem height, ecosystem cover and ecosystem structural complexity. All metrics were cal-

culated with the normalized point cloud using predominantly vegetation points (class ‘unclassi-

fied’ from AHN3 classification provided by ‘Rijkswaterstraat’), except the pulse penetration ratio

which additionally requires ground points. 

2.2. Validation 

For generating the 25 LiDAR metrics of ecosystem structure we used the ASPRS classification

code ‘1: Unclassified’ [15] of the AHN3 point cloud to represent vegetation points. This may

introduce biases into the generated data products if the class contains not only vegetation points

but also other objects such as cars, fences, poles, boats, etc. To validate the derived LiDAR metrics

of ecosystem structure we randomly selected 100 sample plots (10 m × 10 m each) across the

Netherlands and hand-labelled the segmented point clouds (183,837 points in total) into three

classes: vegetation, ground, and others (e.g. buildings, cars, fences). We then used these hand-

labelled points as ground truth and calculated two validation metrics: (1) the misclassification

rate for each plot (i.e. the number of points incorrectly classified as vegetation / total number

of points in the ASPRS class ‘1: Unclassified’), and (2) the accuracy of the 25 derived LiDAR

metrics (i.e. the number of plots in which the LiDAR metric calculation did not differ between

hand-labelled and originally classified points / total number of plots). 

The 100 randomly selected 10 m × 10 m plots were widely spread across the whole Nether-

lands ( Fig. 1a ). Most plots (88%) did not contain any misclassification (i.e. exclusively true veg-

etation points within the ASPRS class ‘1: Unclassified’). Four plots (4%) had more than half of

the points in the ASPRS class ‘1: Unclassified’ incorrectly classified as vegetation. Across all 100

plots the misclassification rate was very low (0.05 ± 0.19, n = 100). 

As a consequence of the low misclassification rate, only a few plots showed differences in

the LiDAR metric calculation between the hand-labelled vegetation points and the points orig-

inally classified as ‘1: Unclassified’ (see dots in Fig. 1b ). Overall, the accuracy of the generated

LiDAR metrics was high (0.90 ± 0.04, n = 25 LiDAR metrics), ranging from 0.87–1. The num-

ber of plots with differences in LiDAR metric values and the degree of difference varied among

LiDAR metrics ( Fig. 1b ). For instance, the LiDAR metrics Hmax and Hp95 showed the strongest

differences among height-related LiDAR metrics, whereas BR_below_1 and BR_below_5 showed

the strongest differences among metrics characterizing the density of vegetation points in cer-

tain vegetation layers ( Fig. 1b ). Closer inspection of specific plots with misclassifications showed

that incorrectly classified points mainly belonged to boats, fences, and cars ( Fig. 1c ). 

2.3. Point density 

Besides the 25 LiDAR metrics, we additionally calculated the point density for each 10 m x 10

m grid cell to quantify the variability in available AHN3 point densities across the Netherlands.

This represents the spatial distribution of the point cloud density and can be used for additional

analyses, e.g. to test how LiDAR metrics of ecosystem structure vary with point densities. The

AHN3 point density was calculated for each 10 m x 10 m grid cell using the ‘point_density’

feature from the ’Laserchicken’ software ( https://laserchicken.readthedocs.io/en/latest/#features ).

https://pypi.org/project/laserfarm/
https://laserchicken.readthedocs.io/en/latest/#features
https://laserchicken.readthedocs.io/en/latest/#features
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Fig. 1. Accuracy assessment of 25 LiDAR metrics of ecosystem structure. (a) Locations of 100 randomly selected 10 

m × 10 m plots in the Netherlands. (b) Boxplots showing the differences in LiDAR metric values between calculations 

using the hand-labelled vegetation points and calculations using the points from the original ASPRS classification (class 

‘1: Unclassified’). The units of the y-axes correspond to the units of each individual metric (e.g. meter for Hmax) and 

are 0 if LiDAR metric calculations of the hand-labelled points and the original classification are the same. (c) Examples 

of 10 m × 10 m plots showing points belonging to boats (pink), road fences (orange), and cars (blue). These points 

belong to the ASPRS classification (class ‘1: Unclassified’) and can bias LiDAR metrics of ecosystem structure if this class 

is assumed to contain only vegetation. Green points are examples of true vegetation points. Colors correspond to panel 

(b) in which the inaccuracies in LiDAR metrics resulting from incorrectly classified vegetation points in these plots are 

shown. 
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Formal description : N/A where N is the total number of points (including points from all

classes from the classification, i.e. not only the points from the class ‘unclassified’) and A is the

area (here: 10 m x 10 m grid cell). 

2.4. Mask 

We additionally derived a mask of water surfaces and human infrastructures (buildings and

roads) from the Dutch cadaster data which allows the user to minimize inaccuracies related to

misclassifications, e.g. ships on water surface, chimneys on roofs, or cars on roads which might

incorrectly be considered as vegetation. A mask of water surfaces and human infrastructures

(buildings and roads) was created from the shapefiles of the 2018 Dutch cadaster data (TOP10NL,

https://zakelijk.kadaster.nl/-/top10nl ) using the same spatial resolution (i.e. 10 meter) and pro-

jected coordinate system (EPSG:28992 Amersfoort / RD New) as the other GeoTIFF files. We ag-

gregated the water, building and road polygons from the TOP10NL shapefiles into one type, and

rasterized them using a binary classification (1: water, building and roads; 0: other). The mask

allows users to minimize errors in the generated country-wide ecosystem structure data because

not all points in the ASPRS point class ‘1: Unclassified’ are vegetation points ( Fig. 2 ). 

3. Experimental Design, Materials and Methods 

3.1. Raw data 

The whole LiDAR point cloud dataset from AHN3 is large and contains ∼700 billion points

and ∼16 TB uncompressed data volume, available in 1,367 point cloud files (LAZ format).

We downloaded all 1,367 files from the AHN3 repository using the PDOK webservices ( https:

//app.pdok.nl/ahn3-downloadpage/ ) and a script for automatic download ( https://github.com/

eEcoLiDAR/downloadAHN ). Data were downloaded to the GRID storage infrastructure ( http:

//doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid _ storage.html ) from SURF, the trans-national 

IT infrastructure for the Dutch academic community ( https://www.surf.nl/en/ict-facilities ). 

3.2. Processing 

For processing the files, we set-up a cluster of 11 virtual machines (VMs) using the HPC Cloud

from SURF ( https://userinfo.surfsara.nl/systems/hpc-cloud ). Each of the 11 VMs had 2 cores (thus

a total of 22 cores), 32 GB or 64 GB RAM, and 256 GB local HDD. We used the Laserfarm

workflow (version 0.1.5) available from PyPI ( https://pypi.org/project/laserfarm/ ), GitHub ( https:

//github.com/eEcoLiDAR/Laserfarm ) and Zenodo ( https://zenodo.org/record/5636773 ) to process 

the multi-terabytes of AHN3 point clouds into GeoTIFF files of LiDAR metrics capturing ecosys-

tems structure. The Laserfarm workflow is implemented in Python and makes use of open-

source tools such as ‘Laserchicken’ [2] , the Point Data Abstraction Library (PDAL, https://pdal.io/ ),

the Geospatial Data Abstraction Library (GDAL, https://gdal.org/ ), the Dask library [16] , and nu-

merous packages hosted on the open source Python Package Index (PyPI, https://pypi.org/ ).

All steps of the AHN3 processing using the Laserfarm workflow are available in Jupyter Note-

books ( https://github.com/eEcoLiDAR/AHN/tree/main/AHN3 ) and involved the following process- 

ing steps: 

As a first step (‘Re-tiling’), we split the 1,367 LAZ files into a grid with 1 km × 1 km size

(512 × 512 cells across the Netherlands), making use of the Dutch projected coordinate system

(EPSG:28992 Amersfoort / RD New). The LAZ files were retrieved from the storage and then split

using functionality from the PDAL library [17] . This resulted in 37,457 tiles for further processing.

https://zakelijk.kadaster.nl/-/top10nl
https://app.pdok.nl/ahn3-downloadpage/
https://github.com/eEcoLiDAR/downloadAHN
http://doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid_storage.html
https://www.surf.nl/en/ict-facilities
https://userinfo.surfsara.nl/systems/hpc-cloud
https://pypi.org/project/laserfarm/
https://github.com/eEcoLiDAR/Laserfarm
https://zenodo.org/record/5636773
https://pdal.io/
https://gdal.org/
https://pypi.org/
https://github.com/eEcoLiDAR/AHN/tree/main/AHN3
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Fig. 2. Examples of minimizing errors in calculated LiDAR metrics using a mask derived from rasterized cadastre data. 

(a) Shapefiles of water, building and road polygons from the 2018 Dutch cadaster data (TOP10NL). (b) Mask generated 

from rasterizing the cadaster data. (c) LiDAR point clouds from the third Dutch airborne laser scanning survey (AHN3) 

illustrating example areas with water, buildings and roads. The classification code that includes vegetation points (green) 

can also contain other objects such as ships on water, chimneys on building roofs, and cars on roads (examples high- 

lighted with red stippled circles). (d) Google Earth images from the example areas. Note that the date of these images 

does not correspond exactly with the date of the airborne laser scanning survey. (e) LiDAR metric of ecosystem height 

(Hp95 = 95 th percentile of normalized z ) extracted and rasterized from the point cloud. (f) Same LiDAR metric cor- 

rected with mask. Red stippled circles illustrate areas where misrepresentation of vegetation (on water, roofs, and roads, 

respectively) has been corrected. 
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In the second step (‘Normalization’), we calculated the normalized height for each individual

point as the height relative to the lowest point within a 1 m × 1 m cell. This pipeline employs

the ‘Normalize’ module of the ’Laserchicken’ software [2] . 

In the third step (‘Feature extraction’), we calculated the LiDAR metrics using the ‘Features’

and ’Compute Neighbors’ modules of the ’Laserchicken’ software [2] . We focused on 25 LiDAR

metrics capturing ecosystem height, ecosystem cover and ecosystem structural complexity (see

details above in ’Data description’). We used the ASPRS classification code ‘1: Unclassified’ [15] of

the AHN3 point cloud to represent vegetation points. We defined the spatial resolution (grid cell

size) for all metrics as 10 m × 10 m using the centroids of square cells and an infinite vertical

extent as the volume geometry in the ’Laserchicken’ software [2] . We finally generated 37,457

PLY files for each LiDAR metric and exported them to separate folders. 

In the fourth step (‘Rasterization’), we merged and exported the PLY tiles for each metric as

a single-band GeoTIFF file in the Dutch projected coordinate system (EPSG:28992 Amersfoort /

RD New). 

3.3. Validation 

We randomly located 100 plots (each of 10 m × 10 m size) across the Netherlands using

the sampleRandom() function in R ( https://www.rdocumentation.org/packages/raster/versions/ 

3.5-15/topics/sampleRandom ). We then segmented the point cloud of each plot from the

raw AHN3 point clouds using the ‘lasclip’ tool from the Lastools software ( https://rapidlasso.

com/lastools/ ), using the polygons of the sampled plots. We then hand-labelled all seg-

mented point clouds (i.e. 183,837 points in total) into the classes of vegetation, ground,

and others (e.g. buildings, cars, fences). This was done with the ArcGIS Pro interactive edit-

ing tool for LAS classification (see https://pro.arcgis.com/en/pro- app/latest/help/data/las- dataset/

interactive- las- class- code- editing.htm ). Each of the 25 LiDAR metrics was then calculated for

each plot using the Laserfarm workflow, once using all points from the ASPRS point class ‘1:

Unclassified’ and once using only the vegetation points from the hand-labelled point clouds (as

ground truth). The values of each LiDAR metric (in GeoTIFF layers from both the original point

clouds and the hand-labelled point clouds) for each plot were then extracted using the extract()

function in R ( https://www.rdocumentation.org/packages/raster/versions/3.5-15/topics/extract ). 

The misclassification rate was calculated for each plot as the number of points which were

incorrectly classified as vegetation divided by the total number of points in the ASPRS class ‘1:

Unclassified’. Accuracy of the 25 LiDAR metrics was assessed by taking the number of plots in

which the LiDAR metric calculation did not differ between hand-labelled and originally classi-

fied points (i.e. difference = 0) and dividing it by the total number of plots ( n = 100). This

allowed us to quantify how accurately the 25 LiDAR metrics capture vegetation structure, and

to what extend their values might be affected by non-vegetation points that remain in the class

‘unclassified’ of the AHN3 pre-classification. 

3.4. Mask 

The mask layer was generated using the water, buildings and road polygons from the

TOP10NL cadaster data (see above ‘Data source location’). We aggregated the polygons and ex-

ported them as a raster layer with a binary classification (1: water, building and roads; 0: other)

and 10 m resolution, using a Jupyter Notebook ( https://github.com/eEcoLiDAR/AHN/tree/main/

AHN-mask ). 

https://www.rdocumentation.org/packages/raster/versions/3.5-15/topics/sampleRandom
https://rapidlasso.com/lastools/
https://pro.arcgis.com/en/pro-app/latest/help/data/las-dataset/interactive-las-class-code-editing.htm
https://www.rdocumentation.org/packages/raster/versions/3.5-15/topics/extract
https://github.com/eEcoLiDAR/AHN/tree/main/AHN-mask
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